

Photophysical Characterization of Phenalenone Derivatives

Christian Silva,^a Paula Miranda,^a Catalina Leal,^a Catalina Sandoval,^b Nancy Pizarro,^c German Gunther,^a

^a Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Casilla 233, Santiago 1, Chile.

^b Pontificia Universidad Católica de Chile, Departamento de Química Física, Facultad de Química y Farmacia, Santiago, Chile

^c Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas. Quillota 980, Viña del Mar, Chile.

e-mail: christianivan.silvagarcia13@gmail.com

Introduction

Phenalenone has been extensively studied due to its photophysical behavior and because it can be used on interesting applications from the scientific and technological point of view, however fewer are the articles referring to the phenalenone derivatives as singlet oxygen generators. The incorporation of substituents on the phenalenone ring at fitterent positions rearranges the molecular electronic states changing its photophysical behavior. In order to rationalize the effect of the presence substituents on different positions of the phenalenone ring, we prepared and studied several derivatives and their corresponding hydroxyl precursor, and we have also included a benzoxazole ring as an electron-aceptor. Benzoxazole-phenalenone derivative shows a shifted absorption with a larger molar extinction coefficient when compared to the other phenalenones presented here, and shows $O_2({}^1\Delta_g)$ quantum yields close to the unity in different solvents.

Molecule	R1	R2	R3
OXA2PN	Benzoxazole	-H	-H
30HPN	-H	-OH	-H
30EtPN	-H	-OEt	-H
6CGalPN	-H	-O(CH ₂) ₆ Gal	-H
6CManPN	-H	-O(CH ₂) ₆ Man	-H
60HPN	-H	-H	-OH

Figure 1. Phenalenone derivatives studied in this work.

UV-Vis absorption and emission

Table 1. Molar extinction coefficients and maximum UV-Vis absorption wavelengths

of studied phenalenone derivatives.

Solvont	$\epsilon / 10^3 { m M}^{-1} { m cm}^{-1} (\lambda_{max} / { m nm})$							
Solvent	30HPN	30EtPN	6CGalPN	6CManPNn	60HPN	60EtPN	OXA2PN	
Acetonitrile	9.0 (349)	12.7 (324)	11.0 (325)	11.4 (332)	5.8 (425)	9.7 (427)	17.5 (411)	
Benzene	9.1 (334)	11.5 (351)	10.4 (332)	9.0 (332)	4.5 (428)	10.1 (422)	19.8 (411)	
Chloroform	9. <mark>7</mark> (33 <mark>3)</mark>	12.0 (328)	11.7 (329)	11.0 (329)	5. <mark>0 (440)</mark>	9.6 (433)	18.3 (417)	
Methanol	1 <mark>1.</mark> 3 (3 <mark>38</mark>)	12.9 (328)	12.3 (329)	13.7 (325)	4.5 <mark>(455)</mark>	9.2 (436)	15.9 (414)	

Ъа

Figure 3. Normalized emission spectra of the different phenalenone derivatives studies in this work.

Singlet oxygen generation X² (red) = 0.974 10³ 10 10°

Table 2. $O_2({}^1\Delta_g)$ quantum yields for PN derivatives in several solvents, determined values are referred to phenalenone as actinometer, with excitation at 355 nm under air.

Solvont		Φ_{Δ}						
	Solvent	30HPN	3OEtPN	6CGalPN	6CManPN	60HPN	60EtPN	OXA2PN
	Acetonitrile	0.83 ± 0.06	0.52 ± 0.02	$\textbf{1.17} \pm 0.11$	$\textbf{1.01} \pm 0.02$	0.66 ± 0.03	0.62 ± 0.03	0.75 ± 0.04
	Benzene	0.33 ± 0.01	0.74 ± 0.03	0.60 ± 0.02	0.61 ± 0.03	0.07 ± 0.01	0.86 ± 0.06	1.07 ± 0.07
	Chloroform	0.65 ± 0.02	N.H.D.	N.H. <mark>D.</mark>	1.03 ± 0.05	0.16 ± 0.01	1.07 ± 0.09	0.88 ± 0.09

Table 3. Triplet lifetimes for PN derivatives in several solvents under air, determined from the growth of singlet oxygen emission.

Solvent			τ _τ / n	S		
Solvent	3 <mark>0EtPN</mark>	6CGalPN	6CManPN	60HPN	60EtPN	OXA2PN
Acetonitrile	270	270	240	290	288	200
Benzene	346	300	330	328	301	167
	407		150		100	

Figure 2. Time resolved infrared emission of $O_2({}^1\Delta_g)$ (1270 nm) obtained upon excitation of **OXA2PN** at 355 nm in air-saturated toluene.

Conclusion

As consequence of this study, we can state that the presence of benzoxazole, hydroxy and alkoxy substituents on the **PN** framework promotes significant changes on their photophysical properties and ground state behavior. For phenalenone derivatives with hydroxy or ethoxy substitution, as new deactivation pathways are opened, a lowered but still significative singlet oxygen generation quantum yield, is observed, but this behavior reverts with ethoxy chains. Benzoxazolephenalenone derivatives acts like a electron-aceptor substituent and exhibits larger molar extinction coeffcients and shows $O_2(^1\Delta_g)$ quantum yields values close to the unit in different solvents. This benzoxazole based phenalenone could be used in the photosensitized singlet oxygen generation.

Chloroform 407 N.H.D. 450 464 430 N.A.

References

- 1. E. Oliveros, P. Suardimurasecco, T. Aminiansaghafi, A.M. Braun, H.J. Hansen, 1h-Phenalen-1-One - Photophysical Properties and Singlet-Oxygen Production, Helv. Chim. Acta, 74 (1991) 79-90.
- 2. C. Flors, S. Nonell, Light and singlet oxygen in plant defense against pathogens: Phototoxic phenalenone phytoalexins, Acc. Chem. Res., 39 (2006) 293-300.
- 3. C. Flors, S. Nonell, On the phosphorescence of 1H-phenalen-1-one, Helv. Chim. Acta, 84 (2001) 2533-2539.

Acknowledgments

The authors acknowledge the fundings of grant Fondecyt 1160705